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DISTRIBUTED SYSTIN OPTIMAL CONTROL AND PARAMETER ESTIMATION: COMPUTATIONAL
TECHNIQUES USING SPLINE APPROXIMATIONS

H. T. Banks

Lefschetz Center for Dynamical Systems, Division of Applied Mathematics,
Brown University, Providence, RI, USA

Abstract. Spline-based computational procedures for parameter estimation and
optimal control problems involving delay and partial differential equations
are outlined. Brief discussions are presented reporting on application of
of the ideas to compute feedback controls for delay systems, to estimate
variable coefficients in population dispersal models, and to estimate para-
meters in higher order models arising in elasticity.

ieywords. Parameter estimation; feedback controls; delay and distributed
systems; computational methods; splines; wind tunnels; ecology; elasticity.

INTRODUCTION in the examples discussed below). One then

approximates the system (I) (and the corres-
In this note we present a brief summary of ponding control or estimation problem) in the
some computational methods that have proven subspace ZN bv the system
useful in optimal control (both open loop and s N N byN N
feedback) and parameter estimation problems z (t) =Q (q)z (t) 4 P F(q,t)
for certain distributed systems. We first out- N N (2)
line the basic ideas which are common to our Z (0) = P
approach whether we are dealing with function- N
al differential equations (FDE) or partial where P is the canonical orthogonal proJec-
differential equations (PDE) of hyperbolic or tion of Z onto ZN and N -pN'/PN. This

parabolic type. Roughly speaking, in each results in an approximate estimation or con-
case one views the system under consideration trol problem entailing a finite dimensional
as an abstract system state space to which standard computational

z(t) =_'(q):(t) + F(q,t) packages can be applied.

(1) The fundamental convergence theory which can

z(O) 0  be used in either control or parameter esti-
in an appropriately chosen Hilbe-t space 2. mation problems is based on semigroup approx-

iimation results. Briefly the ideas are as
In the event that the operator _Q( depends on
parameters q to be estimated, one then has follows (details differ depending upon whether

data or "observations", say (t and one one is treating FDE or PDE). One first demon-
strates that .Q((q) satisfies a unifo-m dis-

attempts to choose a parameter from an sipative inequality in Z (such as<1(q)ZZ>
admissible set Q so as to yield a best fit < W < z,z> for z E Dom (.&(q))and .W(q)
of the model (1) to the data. For optimal Tor some maximal dissipative extension) gen-
control problems, the parameters q are pre- erates a C -semigroup T(t;q). The approxi-
sumed fixed and known and F in (1) is a N
control input term, say F(t) = Bu(t). Then mating operators. S1(q) are defined, as we
one has a performance measure J depending have already indicated, by VN (q)PhrN ;qlP

N ,

on z and u, and an admissible control set and generate a stable family of schemes such
k(either open loop or feedback). One seeks N

a u in* that minimizes J subject to (1). that lexpl' (q)t]] < le
w  

where N1 and
w are independent of q and N. One uses

For either FDE or PDE systems, these problems standard estimates from spline approximation
in volve infirite-dimensional state systemsW N(q)

and hence computational schemes must be based theory to argue that O (qez emoyq): inan appropriate sense. One then employs theon some type of approximation idea. The Trotter-Kato theorem (a functional-analytic
approach we describe here entails choosing version of the Lax Equivalence theorem:
a sequence of finite dimensional subspaces stability plus consistency yield convergene)
ZN of Z generated by basis elements con- to establish that exp No(q)t] e T(t;q)

sisting of splines (linear, cubic, or quintic strongly in Z, and, moreover, that



N N)

lt;q) -z(t;q) where z
N  

and z are solu-
tions of (2) and (1), respectively. These con-
vergence results are used in turn to argue

-Nk
existence of an estimate q=lim q
for the parameter estimation problem involving FAN

_Nk - N ETO
(1), where {q } is some subsequence of {qS),
-N
q a solution of the estimation probelm for INLF1
(2). In the case of optimal control problems, GUIDE
one uses the convergence results to establish A \AL.S
convergence of a subsequence uNk to u, where
-N L

- and u are solutions of the control prob- N IN

lems for (2) and (1), respectively. vENT IN.I.FCT I,

The necessary basic spline approximation theory
for FDE can be found in (Banks and Kappel, 1

9
79)

whereas applications of the ideas to parameter
estimation and control problems are given in TFS1
(Banks, Burns, and Cliff, 1981), (Banks and
Daniel, 1981a), (Daniel, 1982). Fundamental CHANbf P

theory for PDE estimation and control prob-
lems is developed in (Banks and Kunisch, 1981) J
and (Banks, Crowley, and Kunisch, 1981). We
shall not discuss further the theoretical
aspects of our approach in this presentation;
rather we shall briefly outline several speci-
fic problems in which use of these methods has
been quite fruitful. The first application Fig. 1.
involves optimal feedback control for a delay
system problem, while the second and third The basic physical model relating states such
deal with parameter estimation problems forPDE. as Reynolds number, I ressure, and Mach number
PDE.

to controls such as LN, input, G, bleed,

FEEDBACK CONTROL FOR DELAY SYSTEMS and fan operation .nvolves a formidable set 01
PDE (the Navier-Stokes theory) to describe

The problem of constructing feedback controls fluid flow in the tunnel and test chamber.
for hereditary or delay systems is not new and This model has, not surprisingly, proved to be
there is a rather large literature which we very unwieldy from a computational viepoint
sliallnot discuss here. Our own renewed interest and is difficult, if not impossible, to use
in this problem was motivated by problems directly in the design of sophisticated control
arising in the design of controllers for a laws. (Both open loop and feedback controller-
liquid nitrogen wind tunnel (the National are needed for efficient operation of the
Transonic Facility cr NKTF) currently under tunnel - and this is a desirable goal inct

construction by NASA at its Langley Research cost estimates for liquid nitrogen alone arc
Center in Hampton, VA. With this wind tunnel 6
it is expected that researchers will be able $.5 10 per year of operation.' In di.-
to achieve an order of magnitude increase in tion to the design of both open 1ooy an2closed loop controllers, parameter estim.ation
the Reynolds number over that in existing chne wi lleus onaetr tL

tunnels while maintaining reasonable levels techniques ill be useful once data fror th

of dynamic pressure. Test chamber temperatures completed tunnel is availale currert In,C-

(the Reynolds number is roughly inversely tigations involve use of data fromr a I
• " " meter cale model of the tunnel).

proportional to temperature) wil be maintained
at cryogenic levels by injection of liquid In view of the schematic in Fig. 1, it 1- nt

nitrogen as a coolant into the airstream near surprising that engineers e.g see \rm'tron:
the fan section of the tunnel. In addition to andprip 1ha1 ndineer, liiV e r.-

a gaseous nitrogen vent to help control pressure, and Trip o condrol laws f9r subV pro-

motor driven fans will be used as the primary posed design of control laws for qubsvstem.

reguatorof ach umbe. Fne cntro of modeled h) lumped parameter models (the
regulator of Mach number. Fine control of variables represent values of states and con-
Mach number will be effected through changes trollers at various discrete location, in the
in inlet guide vanes in the fan section. tunnel and test chamber, with transport dela-
Schematically, the tunnel can be depicted as

in Fig. 1. to account for flow time in sections of the
tunnel. A specific example i, the model
(Armstrong and Tripp, 1981, for the Mach no.
control loop in which variations in the Mach
no. (in the test chamberi are to first eider.
controlled b karlation, in the inlet guide
\ane angle setting (in the fan sectioni I.e.

i t - t r, %here r represents a trans-
pOrt t ime from the fan section to tht test

sect ion M,,rt pre, sel' , the proposed equat ion
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relating the variation 6M (from steady state with U = J(zou) = < fozo> where the
operating values) in Mach no. to the variation
66 in guide vane angle is bounded linear operator n:-" is the solu-

tion of the Riccati algebraic equation (PA I:t6M(t) + 6M(t) = k clb(t-r)

while the equation relating the guide vane -+ 9R 
1
. n

angle variation to that 6dA  of an actuatorAHere 2 and are operators on -give. I'

is .. 2 2 9(,) (Bf,0) and .O(';) = ( ' .
6e (t) + 2 +. (t) * (t) = w 6A(t). Carrying out the approximation steps outlin.d

above (we used the first order spline sub-
Rewriting the system in vector notation, one spaces explained in detail in S4, p.>9-'-Z
thus finds that the Mach no. control loop in- of (Banks and Kappel, 1979) for thc calcul-
volves a regulator problem for the equation tions on the NTF example and a riumhcr cf ot.,i

test examples reported on in thanks and Ih,-LI.
;(t) = Aoxtt) + AIx(t-r) + B0U(t) (3) 1982))one obtains an approximating RAE cor-

responding to the associated regulator problem

where x = (6M, 60,b6), u = idA. Here the for (2) in ZN. This is given by

control is the guide vane angle actuator in- WN* + . JN - INRN* -9N
put. A similar 4-vector system problem can N N "N "NR N
be formulated in the case where one treats
the actuator rate 6tA as the control - where N = pNN, NN = N

see (Armstrong and Tripp, 1981), (Daniel, 1982). This equation has a matrix representation and

hence standard techniques - we used the OkACLS
Problems such as that just outlined led us to package of Armstrong (1980) in our calculations
consider the spline techniques of (Banks and - can be employed to calculate RN and the
Kappel, 1979) for computation of feedback
controls in regulator problems governed by resulting approximate optimal feedback control

n-vector systems -N -1 IT 00 ro 10
u (t) = -R 

1
BT[Px(t) + f (s)x(t

+ s)ds] (71
x(t) = L(xt) + Bu(t) (4) 00 10 -r
(x(), x) = ((0),)where n are components of , which

approximate the gains K , K1 of (5).
where xt denotes the function s - x(t+s), 0' 1

SAx(t-r.) + We investigated the Mach no. control loop-r < s < 0, and L(x t A)t-

r=j0 jproblem of (Armstrong and Tripp, 1981) de-
A(s)x(t+s)ds with 0 r0 < r1 < ... < r,= scribedabove with the spline-based methods

-r. The cost functional is the usual integral and with the so-called "averaging" approxima-
quadratic payoff tion method (a "zero-order" spline type scheme-

which can also be developed in the context ,f
J(:oU) =J((x(0),X0 ),U) Walsh function approximations - that is notof the form -9

¢N 
= p\ epN but nonetheless can

o x(t)DoX(t) + u(t)Ru(t) be used to compute gains in delay system prob-

lems - for details see (Gibson, 19801). For
where t - x(t) is the solution of (4). As this example the matrices in 3 have the fo-m
is well-known (see the summary and referencesr11
to previous literature in (Gibson, 1980)) the -1/ 0 0 0 k/'
appropriate state feedback control is given
in terms of a functional A 0 0 1 A 0 0

u(X t) = -R -IB T[Ko0X(t) + K l(S)x(t+s)ds) (S) 0- W 2:, 411 0 0

where the gains Ko , KI satisfy certain Riccati

type equations. A detailed explanation of use B 0
of the spline-based methods for computations
in these problems is given in (Banks and Rosen,
1982); we only outline the procedures here and
discuss our numerical findings for the NTF with the parameter values given by .9,
example. sec, r = .33 sec, w- = 3b, .8, k - .011"

Briefly then, or- reformulates the system (4) Calculations were carried out for the problem
as an abstract system (1) in the Hilbert space of driving 6M from -.1 to 0.0 (corresponding
2 = Rn x L (-r,O;Rn) with Z(t) = (x(t),x to M varying from .8 to .9) and i from

2  t 8.55 to 0.0 (corresponding to the guide vane

The optimal feedback control is then given by angle varying from 10.48" to a steady state
(see the summary in §4 of (Gibson, 1980)) of 1.93"). Excellent results were obtained

even for low values of the approximation index
u(t) = -R'I1. fz(t) (6) N (N = 2,4,8). The corresponding optimal con-

trols (7) appear to converge rapidly to an
optimal control of the form (6) (of course, we

. . . . . . . -'7.. / 4i
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do not know n for this example) and when used for detailed remarks on the computations along
as fecback in (3), yield trajectories as with some comments on theoretical aspects (see
graphed in Fig. 2. (In Fig. 2 we compare also (Gibson, 1980) and (Kunisch, 1980yj for
these with similar trajectories obtained in related discussions).
(Armstrong and Tripp, 1981) where finite
difference techniques - assuming piecewise PARAMETER ESTIMATION IN POPULA1ION
constant controls - were used to discretize DISPERSAL MODELS
the delay system before applying standard
regulator theory for discrete systems to cal- An important problem to population ecliFit-
culate the feedback controllers.) involves modeling of dispersal or movement tf

insects and other herbivores in vegetati:r.
10 patches. There is a growing literatiirt

FINITE (Levin, 19'4, 19811, (Okubo, 1980., Karv ..
- DIFFERENCE 1982) on the use of mathematical modrls, I-

pecially ones entailing distributed s'te.,,

SPLIN to investigate the effect of various types Of
transport mechanisms on overall population
movement. Many important ecological investi-

GVA 5 gations result in the need to solve an inverse
problem for a diffusion or more general trans-
port equation. Roughly speaking, given data
describing changing population densities of
a specie (or species) and some preliminary
hypotheses about boundary conditions and
transport functions (spatially, temporally or
perhaps even density dependent) in a proposed

model, one desires to estimate or identify
I -A I -- parameters (including the transport functions)

1 2 3 4 S in the model and quantify the success (or lack

thereof) of the model in describing the data.
.For example, typical models might involve the

.90 -general transport equation (Okubo, 1980, p.98)

(in one spatial variable) for population den-
sit" u (here we mention only single specie

-FINITE models but coupled equations for multiple
DIFFERENCE species models could also be treated with the

ideas we outline) given from mass balance

.85 - SPLINE considerations by

I 3u . ; 3u
KNCHl ~- (Vu) = T ? )* f(xu )  

8
NO.

where the "directed movement" or advective

(Iconvective) term . (u) contains a spa-
.8 ax

tially varying "velocity" term V = \(x). The
diffusion term is, as usual, a result of
assuming Fick's first law of diffusion, while

1 2 3 4 S f represents a general birth/death term. In
TIME (SEC) such models it is often important to allow the

transport functions and V to vary spa-
Fig. 2. tially, temporally, or even with population

The spline method was computationally more density (oi perhaps some combination of these).
Other basic transport assumptions or hypothesesstable and in general more accurate than the (e.g., see (Okubo, 1980, p.

8
4-88), (Dob:hanskv

averaging iethod.. Doth methods appear to and colleagues, 1979))lead to different models,
offer higher order appnroxirations than the but in most cases a very important problem
finite difference techniques of (Armstrong consists of using field'data estimate the
and Tripp, 1981). All three methods appear transport functions (such as and k I and
to be adequate for the simple NTF example perhaps birth/death parameters in f.
we investigated.

We also tested the spline method (and compared We have successfully applied the spline methods
it awsoitesd the gin method onandmred outlined above in connection with (1) and (2)it with the averaging method) on a numbertoscprbes(akan ria, 98.

of other delay system regulator examples and to such problems (Banks and Kareiva, 1982).

our findings are detailed in (Banks and In addition to (Banks and Kareiva, 1982), one

Rosen,may consult (Banks, 1981), (Bans, Crowleei,
metogen erall. n ary at leasa ood ahe andine and Kunisch, 1981) for the theory behind ourmethod generally at least as good as and in efforts. Briefly, one rewrites (8) in the

some cases superior to the averaging method fort (1) in the Hilbert space ( = L(O,I)

with regard to computational stability, and then uses the approximating equaion

accuracy, and rate of convergence. We refer a2) thin tss e ployed c ins

interested readers to (Banks and Rosen, 1982) (2) - in this case we employed cubic splines
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for the basis elements in - with the data here will also prove useful in these problems.
to. estimate the unknown transport functions.
For the resulting finite dimensional problems PARAMETER ESTIMATION IN ELASTIC STRUCTUI1S
we employed a standard IMSL package (ZXSSQ)
for the Levenberg-Marquardt algorithm in our We turn finally to a brief discussion of use
parameter search for a fixed level of approx- of cubic and quintic spline schemes for ;.ar-
imation N. In the particular problems we meter estimation problems arising in the stuu.
investigated, we hypothesized equation (8) of elastic and viscoelastic bodie.. Our
in which V = V(x), - is constant, and f interest in such problems wa, motivat.d i,
contains piecewise linear (in u) terms with discussions with NASA engineers who de-r,
spatially dependent coefficients. We also to estimate material properties for iar
hypothesized unknown parameters in the initial space structures from observations of the
population density. Our early efforts with motions of these structures. 'he siwlvst
field data collected by P. Kareiva (the components of these antenna, jnd spjct
experiments involved the dispersal of flea tions are beam-like and mad,- from comr, -

beetles in cultivated collard patches) re- materials (e.g. graphite epox%;. Thus a
vealed that models such as (8) with a spa- basic problem, we (Banks and crowle, 1961
tially dependent V yield significantly considered estimation in equations such a-
better fits to the data than do models with those arising in the Euler-Bernoulli theor.
V vanishing or chosen as some nontrivial for transverse vibrations of a thin elastic
constant. Our more recent efforts (detailed or viscoelastic beam which is possibly sut-
in (Banks and Kareiva, 1982)), again using ject to damping. More precisely, the well-
the flea beetle data, involve the particular known equations for the transverse vibration<
equation (obtained from (8) after some trans- of a thin elastic beam (no damping! are
formations and assumptions)

au , u . u . _4 EI -" -
= ql-- q,(x) -+ q3(x)u * g(t,x) (9) x

for t 0, 0 < x < 1. The function 1, is m u --1 fq,t,x

assumed to have the form at- IX-

I (x-.L) .5-L < x < .< S L where 4 is the bending moment, m is the

q-,(x) = " mass per unit length and f is the applied
- (0 otherwise, load. Two tx es of damping are included in

where 0, and contai an approur formulation. The first 4s simply viscous
death rate term dq 3 stah al wPopi ate damping ut while the second is structural

dethrtetem(modest death rates within the da
vegetation patch, high death rate outside the damping. For a Voight solid (the simplest
patch) in additionto a term involving q, . viscoelastic model) one has the constitutiie
The function g contains terms relationship C = EE * cL . Thus the stress

arising from standard transformations mis no longer proportional to the strain
alone (as in Hooke's law) but a term propor-

of (8) with nonhomogeneous boundary conditions tional to the strain velocit' is added. Ir
to (91 with homogeneous conditions. The cubic ti aeteuulElrBrolifrua

spline-based estimation techniques have per- tion becomes

formed extremely well in our efforts to esti-

mate ql* q2, q3  as well as the initial con- u2
ditio= foCdA =El -y *CI

ditions from the data. The methods were very oy E-
stable and rapidly convergent, yielding sat-
isfactory estimates for low (N = 8,16) values

of te aproxmatin inex.This results in the equationof the approximation index.
82 * .3

There is strong evidence (Dobzhansky and mu 2 -v ( I + * t lo
colleagues, 1979),(Aikman and Hewitt, 19-21 x- rx 2.
of the need in certain population studies to
estimate time dependent transport coefficients, which can be rewritten in the form l' in the
Our cubic spline methods can be developed for Hilbert space 2= H L, . We have developed
these problems (see (Banks and Daniel, 1981b) and tested estimation schemes for estimation
for preliminary theoretical results) and we of parameters such as El/i, cl/r, )'ml using

aof parameters surcin asetgain along./, )usnare currently pursuing investigations along cubic and quintic spline approximation sub-

spaces Z modified to treat various impor-

There are also numerous important control tant boundary conditions (simply supported.
problems arising in the context of ecological cantilevered, as well as beams with applied
investigations. Once an adequate model is moments at one end). The methods proved
developed (the parameter estimnationproblem), extremely efficient as the detailed presenta-
one might wish to estimate (calculate) the tion in (Banks and Crowley, 1981) documents.
optimal vegetation density in a patch in
order to hold population levels in the patch While the Euler-Bernoulli equation (10) is
to a minimum, or at least below some given applicable in many applications (especially
level. We believe that the methods discussed large space structures), a somewhat more

-~ .. --.. r
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involved analysis is required in situations in which not only the parameter L .n
where rotatory inertia and shear effects play u = (EuxI , but also parameters k k
a significant role in the dynamics. This n t x x t'

theory is often necessary when high frequency in elastic (ux t .01 klu(t .0'0 and

oscillations of the beam must be considered absorbing (u t(t,1) * kUx(t,l z ill bound'r,
(e.g. in aerodynamic structures). In this conditions mcodtosmust be identified fron data.
event the Timoshenko formulation is more
appropriate. This theory can be embodied in
a single higher order equation (fourth order A general theory plus numercal result o -
in t and x derivativesl where the boundary taied when applying our approximation
conditions for even the simply supported beam methods to nonlinear hyperbolic and ac,

involve second order derivatives in both x FDE can be found in (Banks and kunisch, 1S: .

and t. For our purposes it is much more (Banks, Crowle', and Xuniscl , 398J). (thtr

desirable to treat a system of lower order areas of application in hich e hae

equations with the corresponding boundary used o ncu e estiain t rosv s ,

conditions. The equations modeling transverse basd od incld estatin prai'f
vibrations of a homogeneous isotropic elastic transport of labelled substances in bran
beam, including rotator ' inertia and shear figuration and shape, and estimation of poro-
effects, can be written in terms of the figrand permeabi lit, in porous media.
transverse displacement y and the angle i sita
of rotation of the beam cross section from ACKNOWLE[CESIfNTS
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